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Abstract 

Heat transfer resulting from the natural convection in a fluid 
layer contained in an infinite horizontal slot bounded by solid 
walls and subject to a spatially periodic heating at the lower wall 
has been investigated. The heating produces sinusoidal 
temperature variations along one horizontal direction 
characterized by the wave number α with the amplitude 
expressed in terms of a suitably defined Rayleigh number Rap. 
The maximum heat transfer takes place for the heating with the 
wave numbers α=0(1) as this leads to the most intense 
convection. The strength of convection decreases proportionally 
to α for small heating wave numbers, resulting in the heat 
transfer being dominated by periodic conduction with the Nusselt 
number decreasing proportionally to α2. When α becomes large, 
the convection is confined to a thin layer adjacent to the lower 
wall with its strength decreasing proportionally to α-3, with the 
temperature field above the convection layer loosing dependence 
on the horizontal direction.  
 

Introduction  

Fluid systems exposed to spatially distributed heating patterns are 
ubiquitous in nature. Illustrative examples include convection in 
atmospheric boundary layer as surfaces of different colours heat 
up at different rates, e.g., patterns of forests/lakes in rural 
environments and patterns of roofs/streets in urban environments,  
convection induced by patterns of heat sources, e.g., systems of 
localized fires, computer chips, thermal patterning in micro-
fluidic devices for biological applications, and many others. The 
characteristic property of such systems is the existence of 
horizontal gradients of buoyancy force which drive convection 
regardless of the intensity of the heating. This is in contrast with 
the well know Rayleigh-Bénard (RB) convection [1,2] where the 
heating must meet certain critical conditions in order to set the 
fluid into a motion. In spite of the obvious relevance, convection 
resulting from spatially distributed heating has not attracted much 
attention. The existing results are limited to simple sinusoidal 
temperature distributions. Analysis of arbitrary heating patterns is 
yet to be attempted. There have been a number of studies dealing 
with convection in slots formed by isothermal walls fitted with 
spatially-periodic grooves [3-5].  
 
To our best knowledge, Kelly and Pal [6] were the first to study 
convection resulting from the sinusoidal heating using asymptotic 
methods in the long wavelength limit. Yoo and Kim [7] used 
Direct Numerical Simulation (DNS) to investigate convection 
with the heating wavelength comparable to the channel height 

and demonstrated existence of a steady convection replaced by a 
sequence of bifurcations as the heating intensity increased.     
 
As evidenced by the above discussion, the knowledge of even the 
fundamental features of convection driven by a periodic heating 
is very limited. The objective of this analysis is therefore to 
determine the basic characteristics of the heat transfer process in 
a simple reference system consisting of an infinite horizontal 
layer subject to heating from below. We shall focus attention on 
the simplest heating pattern represented by one Fourier mode and 
investigate system response in the complete range of the heating 
wave numbers α. 
 
Problem formulation 

Consider fluid contained in a slot between two parallel plane  
plates extending to ±∞ in the x-direction and placed at a distance 
2h apart each other with the gravitational acceleration g acting in 
the negative y-direction, as shown in Fig.1. The upper plate is 
kept isothermal while the lower plate is subject to a periodic 
heating resulting in the temperatures of the lower (θL) and upper 
(θU) walls in the form 
 

x)cos(1/2(x)θL α= ,        0(x)θU =      (1) 
 
where λ=2π/α is the wavelength  of the heating, θ denotes the 
relative temperature scaled with the amplitude of the peak to 
peak temperature variations along the wall Td, i.e., θ = (T - 
TU)/Td, T denotes the absolute temperature and TU denotes the 
temperature of the upper wall. The fluid is incompressible, 
Newtonian, with thermal conductivity k, specific heat c, thermal 
diffusivity κ=k/ρc, kinematic viscosity ν, dynamic viscosity µ, 
thermal expansion coefficient Γ and variations of the density ρ 
that follow the Boussinesq approximation.  
 
The temperature field is represented as a sum of the conductive 
field Θ and the convective field θ. Two temperature scales are 
used, i.e., Td defined above as the conductive temperature scale 
and Tv= Tdν/κ as the convective temperature scale. Tv/Td=Pr 
where Pr=ν/κ stands for the Prandtl number. Half of distance 
between the plates h is used as the length scale, ν/hUv =  is 

used as the (convective) velocity scale and 2
vv ρUP =  is used as 

the (dynamic) pressure scale.  
 
The complete dimensionless temperature θtot is scaled with the 
convective scale and takes the form 
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where the conductive temperature Θ is determined analytically, 
has the form   
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and does not generate net heat flow across the slot. The 
maximum of θtot in this scaling is always (2Pr)-1. The 
dimensionless field equations describing convection have the 
form 
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where v = (u,v) denotes the velocity vector, p stands for the 
pressure, Rap=gΓh3Td/νκ is the Rayleigh number and ∇2 denotes 
the Laplace operator. The boundary conditions take the form 
 

( ) ( ) ( ) 01θ0,1v0,1u =±=±=± .       (5) 
 
 

 

 

 

 

 

 

 
 
 
 

Figure 1. Sketch of the system configuration. 
 

Method of solution 

Stream function ψ(x,y) is introduced in the usual manner, i.e., 
yψ/u ∂∂= , xψ/v ∂−∂= , and pressure is eliminated resulting 

in the following form of governing equations 
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where ∇4 denotes the biharmonic operator, terms involving 
products and nonlinearities are expressed as  
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and <..> denotes products. The solution is assumed in the form of 
Fourier expansions, i.e., 
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where (n)(n) Du ϕ=  and  (n)(n) inαv ϕ−= . The nonlinear and 
product terms are also expressed in terms of Fourier expansions 
in the  form 
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Substitution of (7)-(8) into (6) and separation of Fourier 
components result in the following system of ordinary 
differential equations for the modal functions 
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where  -∞<n<+∞,  D=d/dy,   D2=d2/dy2,   Dn=D2-n2α2

,  
(n)(n)(n)
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and Θ(n)≠0 for n=±1. The unknown linear terms have been placed 
on the left hand side, and the nonlinear and product terms have 
been placed on the right hand side. The required boundary 
conditions have the form  
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ϕ(n)(±1)=0, Dϕ(n)(±1)=0, φ(n)(±1)=0.         (10a-c) 
 
For the purpose of numerical solution, expansions (7)-(8) have 
been truncated after NM modes. The discretization method uses 
Chebyshev Collocation technique based on the Gauss-
Chebyshev-Lobatto points. The resulting nonlinear algebraic 
system is solved using an iterative technique combined with 
under-relaxation in the form ( )jcompj1j ΦΦRFΦΦ −+=+  

where { }(n)(n) φ,Φ ϕ=  is the vector of unknowns, compΦ

denotes the current solution, jΦ denotes the previous solution, 

1jΦ + stands for the accepted value of the next iteration and RF 

denotes the relaxation factor. The solution process starts with 
solution of (9)-(10) with the RHS terms assumed to be zero. 
Afterwards, a new approximation of the RHS terms is computed 
on the basis of the most recent approximation of the velocity and 
temperature fields and the system (9)-(10) is resolved with the 
new approximation of the RHS. This process is continued, with 
the update of the RHS terms taking place after each iteration, 
until a convergence criterion in the form 

( ) TOLΦΦmax jcomp <− is satisfied. TOL denotes difference 

between solutions obtained in two consecutive iterations and its 
value set at 10-8 was found to be sufficient in most of the 
computations. The number of collocation points and the number 
of Fourier modes used in the solution were selected through 
numerical experiments so that the flow quantities of interest were 
determined with at least six digits accuracy. 
 
The evaluation of the RHS terms requires evaluation of products 
of two Fourier series. It is more efficient to evaluate these 
product in the physical rather than in the Fourier space [8]. The 
required flow quantities, i.e., u, v, θ, were computed in the 
physical space on a suitable grid based on the collocation points 
in the y-direction and a uniformly distributed set of points in the 
x-direction, and the required products were evaluated at the grid 
points. The Fast Fourier Transform (FFT) algorithm was used to 
express these products in terms of Fourier expansions (8). The 
aliasing error was controlled using "padding" [8], i.e., using of a 
discrete FFT transform with Np rather than NM points, where Np 
≥ 3NM / 2. Zeros were added for the additional Fourier modes as 
required.  
 
The primary quantity of interest is the net heat transfer between 
the walls which can be expressed in terms of the Nusselt number 
Nu based on the conductive temperature scale in the form 
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Results 

The topology of the velocity field is made of pairs of counter-
rotating rolls with the flow directed upwards above the hot spots. 
The strength of convection can be measured using the maximum 
of the stream function ψmax. It can be shown that this strength 
decreases proportionally to α when α→0, i.e. 
 

[ ][ ] )0(α415(21/5)(21/5)3PrRa 31/21/2-1
pmax +−+= αψ ,     (12) 

 
as the horizontal gradients of the buoyancy force driving this 
motion decrease with α (Fig.2). Convective temperature 

modifications decrease proportionally to α2 resulting in the 
dominance of the conductive component. As a result, the net heat 
flow between the walls decreases proportionally to α2 when α→0 
(Fig.3), i.e. 
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The strength of convection also decreases when α→∞. It can be 
shown (see Fig.2) that  
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which leads to a decrease of the Nusselt number 
 
Nu = 0.00192 Rap α-3.                                                           (15) 

 
 
 

 

 

 

 

 

 

 

 

Figure 2. Variations of the maximum of the stream function ψmax as a 
function of the heating wave number α for Rap=100, 400. Solid and dash-
dot lines are for the Prandtl numbers Pr=10 and 0.01, respectively, dotted 
lines denote the corresponding asymptotes. ψmax~α1 for α→0, ψmax~α-3 
for α→∞. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 3. Variations of the Nusselt number Nu as a function of the 
heating wave number α for Rap=100, 400. Solid and dash-dot lines are for 
the Prandtl numbers Pr=10 and 0.01, respectively, dotted lines denote the 
corresponding asymptotes. Nu~α2 for α→0, Nu~α-3 for α→∞. 
 
Analysis of results presented in Fig. 2 demonstrates that the 
heating pattern corresponding to α ≈ 1 leads to the most intense 
motion regardless of values of Rap and Pr. The most effective 
heat transfer corresponds to the same pattern of heating, as 
illustrated in Fig.3.  
 
Figure 4 illustrates variations of the strength of convection as a 
function of the heating intensity. It can be seen that this strength 

10-1 100 10110-3

10-2

10-1

100

101

102

103

Rap=400
100ψmax

α

Rap=400
100

)
>

>
γ=720 ( >

<

γ=450

10-1 100 101

10-3

10-2

10-1

Rap=400

100

)

>

>

γ=720

Nu

α

(

>

> γ=63.50



 

 

increases proportionally to Rap while, at the same time, the 
heating wave number that leads to the most intense convection 
decreases. Figure 5 illustrates the resulting changes in the Nusselt 
number.  
 

 

 

 

 

 

 

 

 

 
 

Figure 4.  Variations of the roll strength ψmax as a function of the heating 
wave number α and the Rayleigh number Rap. Dotted lines describe 
asymptotes. 

 

 

 

 

 

 

 

 

 

 
Figure 5. Variations of the Nusselt number Nu as a function of the 
heating wave number α and the Rayleigh number Rap. Dotted lines 
describe asymptotes. 
 

Conclusions 

Analysis of the natural convection heat transfer in an infinitely 
long slot bounded by solid plates has been carried out. The 
external heating results in a periodic temperature distribution in a 
selected horizontal direction along the lower wall. The heating 
pattern is characterized by the wave number α and its intensity is 
expressed in terms of the Rayleigh number Rap based on the 
amplitude of the temperature variations along the lower wall. The 
heating produces horizontal gradients of buoyancy force that 

drive convection regardless of the magnitude of the heating.  The 
resulting motion has the form of pairs of counter-rotating rolls 
with the fluid moving upwards above the hot spots. The flow 
topology remains unchanged in the whole range of α. It is shown 
that the most intense convection and the maximum heat transfer 
occur for α≈1 regardless of Rap. When α→0 (long wavelength 
heating), the intensity of convection decreases, the temperature 
field becomes dominated by conduction associated with periodic 
heating and the net heat flow between the walls decreases 
proportionally to α2. When α→∞ (short wavelength heating), the 
intensity of convection also decreases, the convection becomes 
confined to a thin layer attached to the lower wall (convection 
layer), a zone of pure conduction appears above the convection 
layer, spatial temperature modulation is confined only to the 
convection layer and the heat flow between the walls is driven by 
vertical conduction through the conduction layer.  
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